Citation Prediction in Heterogeneous Bibliographic Networks
نویسندگان
چکیده
To reveal information hiding in link space of bibliographical networks, link analysis has been studied from different perspectives in recent years. In this paper, we address a novel problem namely citation prediction, that is: given information about authors, topics, target publication venues as well as time of certain research paper, finding and predicting the citation relationship between a query paper and a set of previous papers. Considering the gigantic size of relevant papers, the loosely connected citation network structure as well as the highly skewed citation relation distribution, citation prediction is more challenging than other link prediction problems which have been studied before. By building a meta-path based prediction model on a topic discriminative search space, we here propose a two-phase citation probability learning approach, in order to predict citation relationship effectively and efficiently. Experiments are performed on real-world dataset with comprehensive measurements, which demonstrate that our framework has substantial advantages over commonly used link prediction approaches in predicting citation relations in bibliographical networks.
منابع مشابه
Investigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval
Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model. Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...
متن کاملCitation Prediction in Heterogeneous Bibliographic Networks | Proceedings of the 2012 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics
To reveal information hiding in link space of bibliographical networks, link analysis has been studied from different perspectives in recent years. In this paper, we address a novel problem namely citation prediction, that is: given information about authors, topics, target publication venues as well as time of certain research paper, finding and predicting the citation relationship between a q...
متن کاملContinuous-Time Relationship Prediction in Dynamic Heterogeneous Information Networks
Online social networks, World Wide Web, media and technological networks, and other types of so-called information networks are ubiquitous nowadays. These information networks are inherently heterogeneous and dynamic. They are heterogeneous as they consist of multi-typed objects and relations, and they are dynamic as they are constantly evolving over time. One of the challenging issues in such ...
متن کاملScholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other
This study is motivated to explore the similarity among six types of scholarly networks aggregated at the institution level, including bibliographic coupling networks, citation networks, co-citation networks, topical networks, coauthorship networks, and co-word networks. Cosine distance is chosen to measure the similarities among the six networks. We find that topical networks and coauthorship ...
متن کاملMulti-View Clustering for Mining Heterogeneous Social Network Data∗
Uncovering community structure is a core challenge in social network analysis. This is a significant challenge for large networks where there is a single type of relation in the network (e.g. friend or knows). In practice there may be other types of relation, for instance demographic or geographic information, that also reveal network structure. Uncovering structure in such multi-relational net...
متن کامل